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Evaluation of Modes in Dielectric Resonators

Using a Surface Integral Equation
Formulation

ALLEN W. GLISSON, MEMBER, 1EEE, DARKO KAJFEZ, SENIOR MEMBER, 1EEE, AND JOSEPH JAMES

Abstract — A moment method solution procedure for rotationally sym-
metric dielectric bodies has been applied to isolated cylindrical dielectric
resonators, and the frequencies, as well as @ factors due to radiation, have
been determined for several of the lowest modes, including those of hybrid

type.
I. INTRODUCTION

HE ADVANTAGES OF dielectric resonators are

their small size, low cost, and good temperature
stability. One of the important disadvantages is a proxim-
ity of resonant frequencies of various modes. It is therefore
of great importance to know the resonant frequency and
the field pattern not only for the desired mode of operation
(usually TE, ;) but also for other, undesired modes.

Exact field solutions for dielectric resonators are pres-
ently available only for the modes with no azimuthal
variation (first subscript m = 0), and for resonators which
conform to a cylindrical system of coordinates [1]-[4]. The
higher modes (m # 0) have been included in a study of
scattering from rotationally symmetric bodies by Barber
et al. [5]. However, their procedure, which employs the
extended boundary condition method, has not yet been
applied to the study of dielectric resonators.

In this paper, we utilize the method of moments for the
analysis of dielectric resonators. The method is applicable
for dielectric bodies of revolution with arbitrary cross
section and for any azimuthal variation (including hybrid
modes with m # 0). Our approach is based on the solution
of a surface integral equation. It offers several computa-
tional advantages over finite difference equation or volume
integral equation approaches, particularly when the resona-
tor is not enclosed in a metal boundary, such as in the case
of isolated resonators.

The experimental determination of resonant frequencies
and Q factors of dielectric resonators reported in the
literature is restricted to shielded resonators. Shielded reso-
nators have much higher Q values than isolated resonators,
and therefore have much more pronounced resonances.
However, the resonant frequency of a shielded resonator is
modified by the presence of the shielding enclosure. This is
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Fig. 1. Geometry and discretization of generating arc for body of revo-

lution.

even more true with regard to its Q factor. In the present
paper, we report on the measurement of resonant frequen-
cies and Q factors of the four lowest modes in dielectric
resonators in a free-space environment.

II. SURFACE INTEGRAL EQUATION FORMULATION

The surface integral equation approach for treating
problems involving electromagnetic scattering by dielectric
bodies of revolution has been studied by various authors
[6]-[9]. In this paper, we adapt the approach presented in
[9] to the analysis of rotationally symmetric dielectric reso-
nators. The body of revolution is formed by rotating a
planar curve C, the so-called generating arc, about an axis
which is chosen to be the z axis of a Cartesian coordinate
system (Fig. 1). Region 1, exterior to the body, and region
2, interior to the body, are characterized by medium
parameters (pq,¢;) and (@5, €,,0,), respectively. Coordi-
nates (¢, ¢) are introduced on the surface S, where ¢ is the
arc-length along the generating curve and ¢ is the azimuthal
angle measured from the x—z plane. The orthogonal right-
handed triad of unit vectors (#, , ) are normal to S and
tangent to the ¢ and ¢ coordinate lines, respectively. For
numerical purposes, the generating arc is approximated as
a sequence of linear segments as shown in the figure.
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The exterior fields (E°, H®) and the interior fields (E, H)
may be determined from a set of equivalent electric and
magnetic surface currents related to the total tangential
surface magnetic and electric fields according to J =7 X H
and M = E X7, respectively. Coupled surface integral
equations may be obtained by requiring continuity of the
fields tangential to the surface S, yielding

[E(T, M)+ E*(J,M)],, =0 1)

[H(J. M)+ H(J . M)] =0 ©)
where (E, H) and (E°, H*) are evaluated just inside and
just outside S, respectively. The signs preceding all field
quantities in (1) and (2) are positive because the correct
sources for the interior region are (— J, — M) and because
the fields are linear, i.e., —E(—J,— M)=E(J, M) and
~H(~J,—M)=H(J,M). The field quantities in (1)
and (2) are computed with the aid of homogeneous-region
electric and magnetic vector and scalar potentials in which
the permittivities and permeabilities used are those ap-
propriate to the region in which the field quantities are
evaluated. Equations (1) and (2) are thus expressed as

ol 4()+ 42()] + 7 [0}(r)+ 02(r)]
+V><[%Fl(r)+el2F2(r)}} —0 (3)

{jw[Fl(r)+F2(r)] +v [V (r)+¥2(r)]

- X

—EIAl(r)—Fi—z—Az(r)]} ~0 (@)

tan

where the potentials are defined by
H —_ _‘lfg_ ’ I ’ ’
A'(r) 4WLJ(r YG'(r,r')dS (5)

€

Fi(r)= 4;_ fSM(r’)G’(r, r')ds’ (6)

(P’(r)=z717€—fspe(r’)G’(r, v ds’ (7)

1
qf'(r)=WLP'"(r')G'(r,r')dS', i=1,2 (8)

with
e IkR

Gi(r,r)= r

i=1,2 9)

R=1r=r|=p*+p” =2pp'cos (¢ — ¢)+(z — 2')"] ",
(10)

A time dependence of exp(jwt) is assumed and sup-
pressed. k,=w\/ﬁ7€‘, , i=1,2, is the wavenumber of the
associated medium, and r and #’ are vectors locating the
observation and source coordinates, respectively, in the
global coordinate system. Quantities p° and p™ appearing
in (7) and (8) are the electric and magnetic charge densities
which are related to the surface currents through the con-
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tinuity equations

o (r) = L[ v a(r)] (11)
() =L o). (12)

To take advantage of the rotational symmetry of the
body, we expand all currents and scalar Green’s functions
in Fourier series in ¢. For example

2]
e, o)=Y I(t)em (13)

m= —o0
e kR 1 B ,
G(,1¢=¢)=—F—=5- L G,(1,r)e/m*™#

T (14)

where
(15)

Note that the Fourier expansion of the kernel above is
possible because R = |r—#’| is periodic in the variable
(¢ ~ ¢'). The magnetic current M is similarly expanded.
The Fourier expansion of source and field quantities leads
to equations which can be decoupled with respect to the
angular variation and subsequently solved for each Fourier
component pair (J,,(¢), M, (¢)) independently.

G (1) = [ G'(1,1', @) cos(ma) dac.

III. NUMERICAL SOLUTION

The method of moments is applied to (3) and (4) to
obtain for each Fourier component m a set of simultaneous
equations which may be represented in matrix form as

Znll,) =10) (16)
where Z, is the moment matrix and |/,,) is a column
vector containing the surface current coefficients for the
mth Fourier component to be determined. To apply the
method of moments, the generating arc is approximated as
a sequence of linear segments with the discretized ¢ coordi-
nate as shown in Fig. 1. The ¢ vanation of each Fourier
component of electric current is expanded in the basis
functions II;(¢) and IT}(¢), where the superscript i now
refers to the coordinates f, rather than the region, as

follows:
N+1

N
L () =i I () +é 3 I (1)

(17)

=1 =1

where
L t <t<t

H'I(t)= { o ’ —~1/2 1+1/2 (18)

0, otherwise

1 t <r<t
I()=1{(" -1 ! 19
¢() {0, otherwise ( )

The electric charge density is approximated from the con-
tinuity equation (11) as

pe (t) ~ L Nil { pl‘]lml _ pl*lJth_1
" p,—1,2 A1,

w 1=1

jm

+

o

(20)

P.—1,2
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Fig. 2. Interleaved subdomain scheme and basis functions along con-
stant radius portion of generating arc for a cylinder.

where, on the right side of (20), o, = p(2,), A1, =1, —~1¢,_4,
and IT'(s) = IT;(¢), and where poJ;"%=py,, J" V1 =0,
Representations for M,, and p}, follow from (17) and (20)
by replacing electric source quantities by the corresponding
magnetic source quantities. Note in (17)—(19) that the two
orthogonal current components are interleaved in their
spatial representation. This interleaving ' scheme is il-
lustrated in Fig. 2 for a portion of the generating arc of a
cylinder along which the radius is constant (expansion
function heights are different for illustration only). The
placement of subdomains in this interleaving scheme auto-
matically provides for continuity of the ¢+ component of
current at body edges (such as on a dielectric cylinder)
since the basis function for this component straddles such
edges. Basis functions for the ¢ component, however, pro-
vide for two independent values of the current on either
side of a body edge, where this current component may be
singular. .

Equations (3) and (4) are next tested with the testing
functions ' (

q
———H’p(’ ) g-ire (21)

Tr(t,¢) =

and

TP4 = At" —jr¢
‘o (t»q))_—_-;_s(t_'_tqfl/Z)e . (22)
The ¢ components of (3) and (4) are tested with (21), while
the ¢ components are tested with (22). The result is a set of
simultaneous equations of the form (16) for each Fourier
component. Details of the application of the method of
moments to obtain (16) are available in [10] and [11].

The matrix equation (16), of course, has a solution only
when the determinant of the moment matrix Z,, is zero:

det(Z,)=0. (23)
The roots of (23) in the complex frequency plane are
sm,v=om,v+jwm,v (24)

where w,, , is the resonant frequency of the mode (m, »),
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Fig. 3. Moment matrix determinant (m =0) along imaginary axis of
complex frequency plane for dielectric cylinder with e, =35, a = 5 mm,
and 4 =5 mm. '

and ¢, , is inversely proportional to the radiation Q factor

“ (25)

Tm,p
Q= 20, "

The symbol o used to denote the real part of the complex
frequency in (24) and (25) is not to be confused with the
conductivity o used in Fig. 1. The search in the complex
frequency plane for the roots of (23) can be made fairly
efficient for a dielectric resonator because the Q factor for
the modes of interest is usually relatively large. Thus it is
practical to search along the imaginary axis for crude
values of the resonant frequency w, ,(27f,, ,). A plot of
the detcrminant for m = 0 along the imaginary axis of the
complex frequency plane is shown in Fig. 3. In this exam-
ple, the dielectric resonator has €, = 35, its radius is a =
5 mm, and its length is 2 =5 mm. The absolute value, the
real part, and the imaginary part of the determinant are
plotted for the Fourier component m = 0. The generating
arc of the body of revolution is described by 7 points
(N =5). As a consequence of the interleaving scheme de-
scribed above, the resulting matrix is of the size 22 X22. In
the range between 2 GHz and 8 GHz the absolute value of
the determinant in Fig. 3 shows two distinct minima, one
at 5.1 GHz and the other at 7.6 GHz. With the use of
diagrams from [4], the two resonant modes can be identi-
fied as TE;; and TM 5.

IV. DETERMINATION OF COMPLEX ROOTS

More accurate values of the resonant frequencies as well
as the values of the corresponding Q factors can next be
determined by extending the search for roots to the com-
plex frequency plane. Fig. 4 shows the behavior of the

~ determinant along a straight line perpendicular to the

imaginary axis. It is observed that the absolute value shows
a broad minimum, while the real and imaginary parts look
almiost as two straight lines, each going through zero at a
different point. Therefore, the real and imaginary parts of
the determinant may each be approximated by a linear
function of the complex frequency in the vicinity of the
complex root. Using this approximation, it was possible to
devise a simple linear search procedure in which each
iterative step requires the valuation of the moment matrix
at only three points in the complex plane. Since each point
is obtained by computing a determinant of a 22X22 (or
larger) matrix, the need for economy of computer time is
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Fig. 4. Example of moment matrix determinant (m =0) along a con-
stant w cut in complex frequency plane.
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Fig. 5. Convergence plot for frequency and Q factor of dielectric cylin-
der with ¢, =35, g = 5 mm, and A = 5 mm,
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Fig. 6. Moment matrix determinant (m=1) along imaginary axis of
complex frequency plane for dielectric cylinder with €, = 35, a = 5 mm,
and A =35 mm.

evident. Usually, three to five iterative steps were necessary
for an accurate determination of the complex root.

The convergence of the numerical solution was studied
by increasing the number of points ( N +2) on the generat-
ing arc from 7 (22 unknowns) to 37 (142 unknowns). The
results are plotted versus 1/(N +2) in Fig. 5, for the same
resonator as before (e, = 35). One observes that the reso-
nant frequency and the Q factor show good convergence as
N is increased. Note that the resonant frequency computed
using N =5 differs by less than 1 percent from the ex-
trapolated value of the resonant frequency which would be
obtained with an infinite number of points. We take this to
be an indication that the computational procedure is well-
conditioned. The extrapolated value of resonant frequency
for N = oo also agrees with [4] within 1 percent while the
extrapolated value of Q is lower, coming closer to the
values given in [12].

By changing the input parameter from m =0 to m =1,
the same computational procedure gives the determinant
shown in Fig. 6. The absolute value of the determinant
indicates two minima below 8 GHz, one at 6.3 GHz, and
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another at 7.1 GHz. In accordance with the IEEE standard
[13], the hybrid modes on a dielectric resonator are de-
noted by HEM,,, . The first, second, and third subscripts
specify the nature of the azimuthal, radial, and axial varia-
tions, respectively. For all the modes encountered in this
investigation, the third Subscript is smaller than unity,
which is denoted by the synbol 8. The two modes visible in
Fig. 6 are then tentatively denoted by HEM,; and HEM, , ;.

For a reliable mode identification, it is necessary to
compute the detailed field distribution in and around the
resonator. In a limited sense, this may be accomplished by
studying the distribution of the equivalent surface currents
on the resonator, as is done in the next section.

V. MobpaL CURRENT DISTRIBUTION

Once the complex resonant frequency of a mode has
been determined to a sufficient degree of accuracy, the
modal surface current distributions or, equivalently,
the tangential surface fields, can be easily determined. A
Gaussian elimination procedure is used to determine the
current distributions after the value of one current coeffi-
cient is set to some arbitrarily chosen constant. The modal
current distributions provide useful guides for determining
the mode indices » and p of the particular root found in
the complex frequency plane search. (The mode index m is
chosen in advance via the testing functions (21) and (22).)
The mode indices » and p may be determined more pre-
cisely by evaluating the internal fields radiated by the
equivalent electric and magnetic currents for the mode.

The examples which follow are computed for a JFD
resonator type DRD105UDU046, with €, = 38, g = 5.25 mm,
and h = 4.6 mm. Fig. 7 shows the magnetic surface current
M, (solid line) and the electric surface current J, (dotted
line) for the mode TE,;. The resonant frequency is 4.829
GHz and the Q factor is 45.8 (for the 18-point model). The
horizontal axis in Fig. 7 shows the tangential distance ¢
along the contour of the cylindrical resonator. The vertical
axis is the amplitude of the modal surface current (either
electric or magnetic) along a constant ¢ cut and it has only
relative significance, since we investigate the natural re-
sponse without sources. From the orientation of the surface
current such as indicated in Fig. 8, it is seen that M, is
proportional to the E, component of the electric field
everywhere on the surface. On the other hand, J, is propor-
tional to H, on cach end face of the resonator, and
proportional to H, on the cylindrical surface of length 4.
The straight lines connecting the computed values of the
current distribution in Fig. 7, of course, are entirely artifi-
cial. Increased resolution of the modal current distribution
would require use of a larger value of N.

Eighteen points have also been used to evaluate the
mode TM, 5 on the same resonator. The resonant frequency
is 7.524 GHz and the Q factor is 76.8. The modal surface
currents J; and M, are shown in Fig. 9.

The hybrid mode HEM,,; has the resonant frequency
6.638 GHz and the Q factor 52.1 (evaluated with N = 25).
The modal currents shown in Figs. 10 and 11, are consider-
ably more complicated, each of them displaying both ¢ and
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Fig. 7. Magpetic and electric surface current densities for TEy; mode
on dielectric cylinder with €, = 38, ¢ = 5.25 mm, and 4 = 4.6 mm.

Fig. 8. Surface current orientations on cylindrical dielectric resonator.
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Fig. 9. Magnetic and electric surface current densities for TM g5 mode
on dielectric cylinder with €, = 38, a = 5.25 mm, and # = 4.6 mm.
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\ ®

Fig. 12. Waveguide fields of HVEMI2 mode in infinitely long dielectric
rod with €, = 38 and kya = 0.7299. (a) Electric field. (b) Magnetic field.

¢ components. The behavior of the modal currents may be
better understood when compared with the field patterns
in an infinitely long dielectric rod waveguide. The wave-
guide fields of the mode HEM,,, generated by computer
graphics [14], are shown in Fig. 12. For an observer moving
along the line 04 in Fig. 12(a), the E, component displays
a maximum at the origin. Then, with increasing radius, E,
falls to zero and again starts to grow toward a maximum
near the outside edge of the dielectric rod. E, is propor-
tional to the surface current M, which is shown by the solid
line in Fig. 10. Indeed, this current indicates a node on
each end face of the resonator. The E, component along
the line 04 in Fig. 12(a) is zero, so that its behavior should -
be investigated along the line 0B instead. The magnitude of
the field E, on the end face of the resonator is proportional
to M,, shown by a dotted line in Fig. 10. In agreement
with Fig. 12(a), the magnitude decays with increasing
radius approximately to a zero value at the edge of the
resonator. A similar qualitative agreement may be estab-
lished between the magnetic field pattern in Fig. 12(b) and
the modal electric surface current shown in Fig. 11.

VI. EXPERIMENTAL VERIFICATION

The experimental verification was performed with a net-
work analyzer, by using the transmission method. The
resonator was situated in a box padded with absorbing
material. The resonator was coupled to semirigid coaxial -
cables by a small balanced loop and by a balanced dipole.
The balanced arrangement was essential for avoiding exter-
nal currents on the cable shields, which caused serious
difficulties at the beginning of the experimental investiga-
tion.

The computed values of the resonant frequencies and Q
factors shown in Tables I and II have been obtained with
N =11, for the same resonator as before (¢,=38, a=
5.25 mm, h = 4.6 mm). The agreement between computed
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TABLE 1
CoMPARISON OF COMPUTED AND MEASURED RESULTS FOR
RESONATOR WITH €, = 38, ¢ = 5.25 mm, AND /& = 4.6 mm
RESONANT FREQUENCY

£(GHz)

Mope -
MeASURED

CompuTED
4.8
6.63
7.51

7.75

TEq1s 4,85

HEM1o5

o5
HEM)1

6.64
7.60
7.81

TABLE II
COMPARISON OF COMPUTED AND MEASURED RESULTS FOR
RESONATOR WITH ¢, = 38, a = 5.25 mm, AND / = 4.6 mm
Q FACTOR

o
Mobe

MeASURED
(REFLECTION
METHOD)

MEASURED
(TRANSMISSION
METHOD)

48.5 51 47
51.9 64 -
77.0 86 --
291.0 204 288

CoMpuTED

TEg1s
HEM1og

o1
HEMo1 s

Fig. 13. Universal mode chart for isolated cylindrical dielectric resona-

tors with €, = 38.

and measured values in resonant frequencies of various
modes is about 1 percent, while the disagreement between
the computed and measured values of the Q factor is 30
percent in the worst case (mode HEM,,, ). As the transmis-
sion method is not very reliable for the Q measurement, the
reflection method was also attempted. It proved to be
difficult to obtain sufficient coupling to the coaxial line,
especially for the modes with a low Q factor. For the two
modes where the reflection measurement was possible, the
agreement in Q was satisfactory (3 percent).

In spite of repeated attempts, it was not possible to
observe the resonance of the mode HEM; ;.

VIL

Encouraged with the experimental verification of the
numerical procedure, we computed the universal mode
chart for isolated cylindrical dielectric resonators with ¢, =
38. The chart is shown in Fig. 13, displaying the value of
koa versus the ratio a/h. In order to economize the
computer time, the resonant frequencies were determined

Mobg CHART
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by simply observing the minimum of the determinant on
the imaginary axis of the complex plane. The minimum
number of points was N =11, but it was necessary to
increase it for certain values of a/h. Such changes of N
have produced slight kinks in the curves shown in Fig. 13.

In this mode chart, the mode HEM,, is not shown for
two reasons. First, its minimum of the determinant is
poorly defined on the imaginary axis, so that it was often
overlooked in the search process. Second, the experimental
investigation did not demonstrate the existence of this
mode.

VIIL

A surface integral equation formulation and the method
of moments have been appliéd to the analysis of isolated
dielectric resonators. The method has yielded highly accu-
rate values of resonant frequencies and Q factors for both
circularly symmetric and hybrid resonator modes. The
computational procedure is the same for both types of
modes.

The examples described illustrate the power of the for-
mulation used, but they do not exhaust its versatility. The
formulation also allows one to model losses in the dielec-
tric material. Lossy dielectrics have not been included here
because, in the case of isolated resonators, the dominant
losses result from radiation.

Only resonators of cylindrical shape have been studied
thus far, whereas the integral equation formulation can be
applied to arbitrary rotational bodies by simply modifying
the shape of the generating arc. In addition, other rota-
tionally symmetric bodies having the same axis of revolu-
tion, such as metal covers, tuning rods, or coupled resona-
tors could be included in the formulation with relative ease.
The surface equation formulation presented could also be
modified to include simple asymmetric bodies, such as
wires, near the resonator [135].

CONCLUSION
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