
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 12, DECEMBER 1983 1023

Evaluation of Modes in Dielectric Resonators
Using a Surface Integral Equation

Formulation

ALLEN W. GLISSON, MEMBER, IEEE, DARKO KAJFEZ, SENIOR MEMBER, IEEE, AND JOSEPH JAMES

Abstract —A moment method solution procedure for rotationally sym-

metric dielectric bodies has heen appfied to isolated cylindrical dielectric

resonators, and the frequencies, as well as Q factors due to radiation, have

been determined for severaf of the lowest modes, including those of hybrid

WW.

I. INTRODUCTION

T HE ADVANTAGES OF dielectric resonators are

their small size, low cost, and good temperature

stability. One of the important disadvantages is a proxim-

ity of resonant frequencies of various modes. It is therefore

of great importance to know the resonant frequency and

the field pattern not only for the desired mode of operation

(usually TE018) but also for other, undesired modes.

Exact field solutions for dielectric resonators are pres-

ently available only for the modes with no azimuthal

variation (first subscript m = O), and for resonators which

conform to a cylindrical system of coordinates [1]–[4]. The

higher modes (m # O) have been included in a study of

scattering from rotationally symmetric bodies by Barber

et al. [5]. However, their procedure, which employs the

extended boundary condition method, has not yet been

applied to the study of dielectric resonators.

In this paper, we utilize the method of moments for the

analysis of dielectric resonators. The method is applicable

for dielectric bodies of revolution with arbitrary cross

section and for any azimuthal variation (including hybrid

modes with m + O). Our approach is based on the solution

of a surface integral equation. It offers several computa-

tional advantages over finite difference equation or volume

integral equation approaches, particularly when the resona-

tor is not enclosed in a metal boundary, such as in the case

of isolated resonators.

The experimental determination of resonant frequencies

and Q factors of dielectric resonators reported in the

literature is restricted to shielded resonators. Shielded reso-

nators have much higher Q values than isolated resonators,

and therefore have much more pronounced resonances.

However, the resonant frequency of a shielded resonator is

modified by the presence of the shielding enclosure. This is
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Fig. 1. Geometry and discretization of generating arc for body of revo-

lution.

even more true with regard to its Q factor. In the present

paper, we report on the measurement of resonant frequen-

cies and Q factors of the four lowest modes in dielectric

resonators in a free-space environment.

II. SURFACE INTEGRAL EQUATION FORMULATION

The surface integral equation approach for treating

problems involving electromagnetic scattering by dielectric

bodies of revolution has been studied by various authors

[6]-[9]. In this paper, we adapt the approach presented in

[9] to the analysis of rotationally symmetric dielectric reso-

nators. The body of revolution is formed by rotating a

planar curve C, the so-called generating arc, about an axis

which is chosen to be the z axis of a Cartesian coordinate

system (Fig. 1). Region 1, exterior to the body, and region

2, interior to the body, are characterized by medium

parameters (vl, c1) and (p2, C2, Uz), respectively. Coordi-
nates (t, @) are introduced on the surface S, where t is the

arc-length along the generating curve and @is the azimuthal

angle measured from the x – z plane. The orthogonal right-
handed triad of unit vectors (i, $, f) are normal to ~ and

tangent to the @ and t coordinate lines, respectively. For

numerical purposes, the generating arc is approximated as

a sequence of linear segments as shown in the figure.

0018-9480/83/1200-1023$01.00 01983 IEEE
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The exterior fields (~f, H’ ) and the interior fields (J3, II )

may be determined from a set of equivalent electric and

magnetic surface currents related to the total tangential

surface magnetic and electric fields according to J= A X H

and M?= E x f, respectively. Coupled surface integral

equations may be obtained by requiring continuity of the

fields tangential to the surface S, yielding

[E(J, M)+ E’(.l, M)]tm=o (1)

[H(J, M)+ H’(.T, M)]tm=o (2)

where (~, H) and (~’, IZ$) are evaluated just inside and

just outside S, respectively. The signs preceding all field

quantities in (1) and (2) are positive because the correct

sources for the interior region are ( — J, —M) and because

the fields are linear, i.e., –E(– J,– M)= E(J, M) and

– H( – J, – M) = H( ~, Ikf). The field quantities in (1)

and (2) are computed with the aid of homogeneous-region

electric and magnetic vector and scalar potentials in which

the permittivities and permeabilities used are those

propriate to the region in which the field quantities

evaluated. Equations (1) and (2) are thus expressed as

(
ju[A1(r)+ A2(r)]+ V[@(r)+ @2(r)]

[
+V x -@+:F*(r)

1)
=0

tan

[
– V X ~A1(r)+~A2(r)

1}
=0

tan

where the potentials are defined by

~’(~)=~p(r’)G’(r5r’)~s’

/
F’(r) = 5 M(r’)G’(r, r’)dS”

47r ~

@’(~) =& JP’(r’)G’(r7r’)~s’
1s

~’(~) =&~pm(r’)G’(r,r’) dS’, i=l,2
IS

with

–kR

G;(y, y’) = ~, 1=1,2

sp-

are

(3)

(4)

(5)

(6)

(7)

(8)

(9)

R=jr–r’/=[p2+p’2 –2pp’cos (@– +’)+(2 – 2’)2]1’2.

(lo)

A time dependence of exp ( jut ) is assumed and sup-

pressed, k, = a-, i =1,2, is the wavenumber of the

associated medium, and r and r’ are vectors locating the

observation and source coordinates, respectively, in the

global coordinate system. Quantities p= and pm appearing

in (7) and (8) are the electric and magnetic charge densities

which are related to the surface currents through the con-

tinuity equations

p’(r’) = ~ [ v~..l(r’)] (11)

p“’(r’) = ~ [ v~. kf(r’)] . (12)

To take advantage of the rotational symmetry of the

body, we expand all currents and scalar Green’s functions

in Fourier series in @. For example

m

J(t’, c+’) = ~ Jm(t’)e~mo’ (13)

(14)

where

G~(t, t’) =jT G’(t, t’, a)cos(wza) da. (15)
—v

Note that the Fourier expansion of the kernel above is

possible because R = Ir – r’1 is periodic in the variable

(+ – @’). The magnetic current ~ is similarly expanded.
The Fourier expansion of source and field quantities leads

to equations which can be decoupled with respect to the

angular variation and subsequently solved for each Fourier

component pair ( Jw ( t ), Mm (i )) independently.

IIL NUMERICAL SOLUTION

The method of moments is applied to (3) and (4) to

obtain for each Fourier component m a set of simultaneous

equations which may be represented in matrix form as

~mlIm)=lo) (16)

where ~~ is the moment matrix and 11~) is a column

vector containing the surface current coefficients for the

m th Fourier component to be determined. To apply the

method of moments, the generating arc is approximated as

a sequence of linear segments with the discretized tcoordi-

nate as shown in Fig. 1. The t variation of each Fourier

component of electric current is expanded in the basis

functions II; (t) and II;(t), where the superscript i now

refers to the coordinates t, rather than the region, as

follows :

*=1 ~=1

where

{

P,

n:(t)= j’
tl–1/2~t <t1+l/2 (18)

o, otherwise

{
~;(t)= 1’ t,_l<t<t,

o, otherwise
(19)

The electric charge density is approximated from the con-

tinuit y equation (11) as

(20)
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Fig. 2. Interleaved subdomain scheme and basis functions along con-

stant radius portion of generating arc for a cyliader.
,,

where, on the right side of (20), p, = p(t, ), Ati = ti— ti_1,

and Hi(t) = II\(t),and where po~ln’o = p~+l~l~’~+l = O.
Representations for &fn and p; follow from (17) and (20)

by replacing electric source quantities by the corresponding

magnetic source quantities. Note in (17)–(19) that the two

orthogonal current components are interleaved in their

spatial representation. This interleaving scheme i; il-

lustrated in Fig. 2 for a portion of the generating arc of a

cylinder along which the radius is constani (expansion

function heights are different for illustration only). The

placement of subdomains in this interleaving scheme auto-

matically provides for continuity of the t component of

current at body edges (such as cm a dielectric cylinder)

since the basis function for this component straddles such

edges. Basis functions for the @ component, however, pro-

vide for two independent values of the current on either

side of a body edge, where this current component may be

singular.

Equations (3) and (4) are next tested with the testing

functions

(21)

and

At
~f~(t,~) = &a(t – tq-1/2)e-jp$. (22)

The r components of (3) and (4) are tested with (21), while

the @components are tested with (22). The result is a set of

simultaneous equations of the form (16) for each Fourier

component. Details of the application of the method of

moments to obtain (16) are awailable in [10] and [11].

The matrix equation (16), of course, has a solution only

when the determinant of the moment matrix ~~ is zero:

det(?~)=O. (23)

The roots of (23) in the complex frequency plane are

s . um,v m,v + J~m,. (24)

where u~ ,, is the resonant frequency of the mode (m, v),

0,4
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Fig. 3. Moment matrix determinant (m= O) along imaginary axis of

complex frequency plane for dielectric cylinder with c,= 35, a = 5 mm,

andk=5 mm.

and u~ ,, is inversely proportional to the radiation Q factor

(25)
‘Vm, v

The symbol rJ used to denote the real part of the complex

frequency in (24) and (25) is not to be confused with the

conductivity u used in Fig. 1. The search in the complex

frequency plane for the roots of (23) can be made fairly

efficient for a dielectric resonator because the Q factor for

the modes of interest is usually relatively large. Thus it is

practical to search along the imaginary axis for crude

values of the resonant frequency am .(2 m~~,, ). A plot of

the determinant for m = O along the imaginary axis of the

complex frequency plane is shown in Fig. 3. In this exam-

ple, the dielectric resonator has e,= 35, its radius is a =

5 mm, and its length is h = 5 mm. The absolute value, the

real part, and the imaginary part of the determinant are

plotted for the Fourier component m = O. The generating

arc of the body of revolution is described by 7 points

(N= 5). As a consequence of the interleaving scheme de-

scribed above, the resulting matrix is of the size 22x22. In

the range between 2 GHz and 8 GHz the absolute value of

the determinant in Fig. 3 shows two distinct minima, one

at 5.1 GHz and the other at 7.6 GHz. With the use of

diagrams from [4], the two resonant modes can be identi-

fied as TE018 and TMola.

IV. DETERMINATION OF COMPLEX ROOTS

More accurate values of the resonant frequencies as well

as the values of the corresponding Q factors can next be

determined by extending the search for roots to the com-

plex frequency plane. Fig. 4 shows the behavior of the

detertninant along a straight line perpendicular to the

imaginary axis. It is observed that the absolute value shows

a broad minimum, while the real and imaginary parts look

almost as two straight lines, each going through zero at a

different point. Therefore, the real and imaginary parts of

the determinant may each be approximated by a linear

function of the complex frequency in the vicinity of the
complex root. Using this approximation, it was possible to

devise a simple linear search procedure in which each

iterative step requires the valuation of the moment matrix

at only three points in the complex plane. Since each point

is obtained by computing a determinant of a 22X 22 (or

larger) matrix, the need for economy of computer time is
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Fig. 5. Convergence plot for frequency and Qfactor ofdielectficcyhn-

derwithcr= 35, a = 5 mm, andh = 5 mm.
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complex frequency plane for dielectric cylinder with c, = 35, a = 5 mm,
and h = 5 mm.

evident. Usually, three to five iterative steps were necessary

for an accurate determination of the complex root.

The convergence of the numerical solution was studied

by increasing the number of points (N+ 2) on the generat-

ing arc from 7 (22 unknowns) to 37 (142 unknowns). The

results are plotted versus 1/( N +2) in Fig. 5, for the same

resonator as before (c, = 35), One observes that the reso-

nant frequency and the Q factor show good convergence as

N is increased. Note that the resonant frequency computed

using N = 5 differs by less than 1 percent from the ex-

trapolated value of the resonant frequency which would be

obtained with an infinite number of points. We take this to

be an indication that the computational procedure is well-

conditioned. The extrapolated value of resonant frequency

for N ~ m also agrees with [4] within 1 percent while the

extrapolated value of Q is lower, coming closer to the

values given in [12].

By changing the input parameter from m = O to m =1,

the same computational procedure gives the determinant

shown in Fig. 6. The absolute value of the determinant

indicates two minima below 8 GHz, one at 6.3 GHz, and

another at 7.1 GHz. In accordance with the IEEE standard

[13], the hybrid modes on a dielectric resonator are de-

noted by HEMm~P. The first, second, and third subscripts

specify the nature of the azimuthal, radial, and axial varia-

tions, respectively. For all the modes encountered in this

investigation, the third subscript is smaller than unity,

which is denoted by the synbol d. The two modes visible in

Fig. 6 are then tentatively denoted by HEM118 and HEM128.

For a reliable mode identification, it is necessary to

compute the detailed field distribution in and around the

resonator. In a limited sense, this may be accomplished by

studying the distribution of the equivalent surface currents

on the resonator, as is done in the next section.

V. MODAL CURRENT DISTRIBUTION

Once the complex resonant frequency of a mode has

been determined to a sufficient degree of accuracy, the

modal surface current distributions or, equivalently,

the tangential surface fields, can be easily determined. A

Gaussian elimination procedure is used to determine the

current distributions after the value of one current coeffi-

cient is set to some arbitrarily chosen constant. The modal

current distributions provide useful guides for determining

the mode indices n and p of the particular root found in

the complex frequency plane search. (The mode index m is

chosen in advance via the testing functions (21) and (22).)

The mode indices n and p may be determined more pre-

cisely by evaluating the internal fields radiated by the

equivalent electric and magnetic currents for the mode.

The examples which follow are computed for a JFD

resonator type DRD105UDO46, with ~, = 38, a = 5.25 mm,

and h = 4.6 mm. Fig. 7 shows the magnetic surface current

Ml (solid line) and the electric surface current J+ (dotted

line) for the mode TE018. The resonant frequency is 4.829

GHz and the Q factor is 45.8 (for the 18-point model). The

horizontal axis in Fig. 7 shows the tangential distance t

along the contour of the cylindrical resonator. The vertical

axis is the amplitude of the modal surface current (either

electric or magnetic) along a constant r) cut and it has only

relative significance, since we investigate the natural re-

sponse without sources. From the orientation of the surface

current such as indicated in Fig. 8, it is seen that Mf is

proportional to the E+ component of the electric field

everywhere on the surface. On the other hand, Y+ is propor-

tional to Ho on each end face of the resonator, and

proportional to Hz on the cylindrical surface of length h.

The straight lines connecting the computed values of the

current distribution in Fig. 7, of course, are entirely artifi-

cial. Increased resolution of the modal current distribution

would require use of a larger value of N.

Eighteen points have also been used to evaluate the

mode TM018 on the same resonator. The resonant frequency

is 7.524 GHz and the Q factor is 76.8. The modal surface

currents Jr and kfq are shown in Fig. 9.

The hybrid mode H13M125 has the resonant frequency

6.638 GHz and the Q factor 52.1 (evaluated with A’= 25).

The modal currents shown in Figs. 10 and 11, are consider-

ably more complicated, each of them displaying both tand
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Fig. 7. Magnetic and electric surface current densities for TEOIO mode
on dielectric cylinder with c, = 38, a = 5.25 mm, and h = 4.6 mm.
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—.---L.
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Fig. 8. Surface current orientations on cylindncaf dielectric resonator.

t(mm)

Fig. 9. Magnetic and electric surface current densities for TM018 mode

on dielectric cylinder with c, = 38, a = 5.25mm, and h = 4.6 mm.

t(mm)

Fig. 10.’ Magnetic surface current density for HEM126 mode on dielec-
tric cylinder with c.= 38, a = 5.25 mm, and h = 4.6 mm.

‘50”0~

Fig. 11. Electric surface current density for HEM120 mode on dielectric
cylinder with c, = 38, a = 5.25 mm, and h = 4.6 mm.

(b)

Fig. 12. Waveguide fields of HEM12 mode in infinitely long dielectric
rod with c, = 38 and k. a = 0,7299. (a) Electric field. (b) Magnetic field.

~ components. The behavior of the modal currents maybe

better understood when compared with the field patterns

in an infinitely long dielectric rod waveguide. The wave-

guide fields of the mode HEM12, generated by computer

graphics [14], are shown in Fig. 12. For an observer moving

along the line OA in Fig. 12(a), the E+ component displays

a maximum at the origin. Then, with increasing radius, E+

falls to zero and again starts to grow toward a maximum

near the outside edge of the dielectric rod. E+ is propor-

tional to the surface current Ml which is shown by the solid

line in Fig. 10. Indeed, this current indicates a node on

each end face of the resonator. The EP component along

the line OA in Fig; 12(a) is zero, so that its behavior should

be investigated along the line OB instead. The magnitude of

the field EP on the end face of the resonator is proportional

to M@,, shown by a dotted line in Fig. 10. In agreement

with Fig. 12(a), the magnitude decays with increasing

radius approximately to a zero value at the edge of the

resonator. A similar qualitative agreement may be estab-

lished between the magnetic field pattern in Fig. 12(b) and

the modal electric surface current shown in Fig. 11.

VI. EXPERIMENTAL VERIFICATION

The experimental verification was performed with a net-

work analyzer, by using the transmission method. The

resonator was situated in a box padded with absorbing

material. The resonator was coupled to semirigid coaxial

cables by a small balanced loop and by a balanced dipole.

The balanced arrangement was essential for avoiding exter-

nal currents on the cable shields, which caused serious

difficulties at the beginning of the experimental investiga-

tion.

The computed values of the resonant frequencies and Q

factors shown in Tables I and II have been obtained with

IV= 11, for the same resonator as before (6, = 38, a =

5.25 mm, h = 4.6 mm). The agreement between computed
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TABLE I

COMPANSON OF COMPUTED AND MEASURED RESULTS FOR
RESONATOR WITH c,= 38, a = 5.25 mm, ANEJh = 4.6 mm

RESONANT FREQUENCY

B
F (GHz)

MODE

COMPUTED MEASURED

% 4,82 4,85

HEM128 6,63 6,64

TM018 7.51 7,60

HEM218 7,75 7,81

TABLE H

COMPARISON OF COMPUTED AND MEASURED RESULTS FOR
RESONATOR WITH c,= 38, a = 5.25 mm, AND h = 4.6 mm

Q FACTOR

Q
MODE

COMPUTED MEASURED MEASURED

(TRANsMIs510N (REFLEtTf ON

METHoD) METHOD)

TE018 48,5 51 47

HEM~28 51.9 64 .-

Tflo18 77.0 86 . .

HEM*18 291,0 204 288

m,/,.
1,25 HEM21S, ‘“’ TMo18

,/,
/

, _---’
/-------

HEM223 -,< HEM128_.-.
% ,<. - ,.. ..,------”

. -------
= 0.75 :::-----------

‘~

o.z,~
0.25 1.25 2.25 3.25

a/h

Fig. 13. UniversaJ mode chart for isolated cylindrical dielectric resona-
tors with c, = 38.

and measured values in resonant frequencies of various

modes is about 1 percent, while the disagreement between

the computed and measured values of the Q factor is 30

percent in the worst case (mode HEM21a). As the transmiss-

ion method is not very reliable for the Q measurement, the

reflection method was also attempted. It proved to be

difficult to obtain sufficient coupling to the coaxial line,

especially for the modes with a low Q factor. For the two
modes where the reflection measurement was possible, the

agreement in Q was satisfactory (3 percent).

In spite of repeated attempts, it was not possible to

observe the iesonance of the mode HEM118.

VII. MODE CHART

Encouraged with the experimental verification of the

numerical procedure, we computed the universal mode

chart for isolated cylindrical dielectric resonators with ~, =

38. The chart is shown in Fig. 13, displaying the value of

koa versus the ratio a/h. In order to economize the

comtmter time. the resonant frequencies were determined

by simply observing the minimum of the determinant on

the imagina~ axis of the complex plane. The minimum

number of points was N =11, but it was necessary to

increase it for certain values of a/h. Such changes of N

have produced slight kinks in the curves shown in Fig. 13.

In this mode chart, the “mode HEMll@ is not shown for
two reasons. First, its minimum of the determinant is

poorly defined on the imaginary axis, so that it was often

overlooked in the search process. Second, the experimental

investigation did not demonstrate the existence of this

mode.

VIII. CONCLUSION

A surface integral equation formulation arid the method

of moments have been applied to the analysis of isolated

dielectric resonators. The method has yielded highly accu-

rate values of resonant frequencies and Q factors for both

circularly symmetric and hybrid resonator modes. The

computational procedure is the same for both types of

modes.

The examples described illustrate the power of the for-

mulation used, but they do not exhaust its versatility. The

formulation also allows one to model losses in the dielec-

tric material. Lossy dielectrics have not been included here

because, in the case of isolated resonators, the dominant

losses result from radiation.

Only resonators of cylindrical shape have been studied

thus far, whereas the integral equation formulation can be

applied to arbitrary rotational bodies by simply modifying

the shape of the generating arc. In addition, other rota-

tionally symmetric bodies having the same axis of revolu-

tion, such as metal covers, tuning rods, or coupled resona-

tors could be included in the formulation with relative ease.

The surface equation formulation presented could also be

modified to include simple asymmetric bodies, such as

wires, near the resonator [15].
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